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Abstract. We study a model of deposition, diffusion and aggregation of particles forming one-
dimensional islands in a square lattice. The dependence of the island density exponentχ on the
anisotropy diffusion parameterA is analysed. It is found thatχ continuously decreases from
χ = 1

3 to χ = 1
4 whenA increases fromA = 1 to infinity. This nonuniversal behaviour is a direct

consequence of the finite island size and, whenA > 1, the fast diffusion direction is perpendicular
to the growth direction of the islands. For infinite anisotropic diffusion,A = ∞, the anomalous
resultχ = 0 is obtained.

1. Introduction

In recent years much effort has been dedicated to the study of growth of thin films by molecular
beam epitaxy. In order to understand the microprocesses associated with deposition, nucleation
and aggregation of ad-atoms, several models of growth of islands on two-dimensional substrate
have been developed and studied [1]. Some general properties of these models, such us the
behaviour of the island density and the scaling of the island size distribution as a function of
relevant experimental parameters, have been analysed [2–8].

Recently, a model for diffusion and growth of silicon on Si(100) has been introduced in [9]
and some properties of this model related to the universality of the island density exponent is
analysed in [10]. More specifically, in the latter is studied a model of deposition, diffusion
and irreversible aggregation of particles forming one-dimensional dimerized chains in a square
lattice. The particles aggregate at the ends of islands and the probability of sticking is zero
at the sides. The dependence of the islands densityN , on two independent parameters is
explored. These parameters are the anisotropy in the diffusion,A, and the average number
of jumps made by every isolated particle in a given time divided by the deposited number of
particles per site in the same time,R. For a fixed final coverage of particles and for large
enoughR, it is expected that the power lawN ∼ R−χ be satisfied. For the case of anisotropic
diffusion (A > 1), the direction of fast diffusion is perpendicular to the island growth direction.
As the sticking probability is zero at the sides, the islands block an increasing number of fast
diffusion channels as they grow. Then, the model is specially attractive to study the dependence
of the island density exponentχ onA. It was found thatχ = 1

3 for 1 6 A < ∞. The result
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χ = 1
3 for A = 1 was also found for other very dissimilar models in two dimensions (see,

for example, [2] for point islands and [3, 4] for dendritic islands). Linderoth [5] also found
χ = 1

3 for 1 6 A <∞ for compact and approximately square islands. All these results give
support to the universality with predicts that, for a given space dimension, the value ofχ does
not depend on the adopted details of models, lattices and diffusion.

In this paper we study a variant of the model of [9] in which the one-dimensional islands
are composed of monomers in place of dimers. As reported in section 3 we obtainχ = 1

3

for A = 1 and a value ofχ very close to1
4 for A = 1000. This suggests thatχ changes

smoothlyfrom 1
3 to 1

4 as anisotropy increases fromA = 1 to the limitA → ∞, provided
thatA be finite (A < ∞). These results were already found by Moet al [6]. Based on point
target models, Pimpinelli [7] and Moet al [8] give some justifications for the resultχ ' 1

4
whenA = 1000 (the main assumption is that for highly anisotropic diffusion the particles
describe one-dimensional random walks). For one-dimensional diffusion, which corresponds
toA = ∞, a point island model givesχ = 1

4 [2]. Nevertheless, in [5] it is found thatχ is close
to 1

3 for a point island model, withA = 1000. Moreover, for the model used in this paper,
we obtainχ = 0 forA = ∞. This result does not correspond to a point island model. Thus,
the results obtained for the monomer chains merit a deeper analysis, and that is the aim of this
paper.

This paper is organized as follows. In section 2 we define the model. The Monte Carlo
results are presented in section 3. In that section we show how the obtained results are a direct
consequence of the combination of the growth rules of the model and the anisotropic diffusion.
Finally in section 4 we state our conclusions.

2. The model and the Monte Carlo simulation

The substrate is represented by a square lattice of 1000× 1000 sites and lattice constanta.
Periodic boundary conditions were adopted in order to avoid the edge effects.

At each Monte Carlo step, one site of the substrate is randomly chosen. The following
situations may appear:

(i) If the site is empty, it is occupied with a particle with probabilityε.
(ii) If the site is occupied and both its nearest neighbour (NN) sites in thex direction are

empty, the particle tries to jump to any of its NN sites in thex direction with probability
Px , and to any of its NN sites in they direction with probabilityPy . If the particle attempts
to jump in they direction and the chosen NN site is occupied by another particle, the jump
is not performed.

(iii) If the site is occupied and any of its NN sites in thex direction is also occupied, nothing
happens. Particles located at NN sites in thex direction are bounded and form islands.

Simulations start with the lattice empty and run until the density per site of deposited
particles reach a desired value2. We are interested in coverage low enough to avoid the
percolation regime [3]. So, employed values for2 are below 0.1.

In this model, sites can be occupied, at most, by only one particle. Islands grow irreversibly
by aggregation of particles in thex direction and particles do not stick at the lateral side of
one-dimensional islands.

Although, for a fixed final coverage, the model presents three variable parameters (ε, Px ,
andPy), it is expected that all processes depend only on the relative value of these probabilities.
Then there are only two independent relevant parameters, which we have chosen asA ≡ Py/Px
andR ≡ 2(Px + Py)/ε. Figure 1 shows, as an example, a final resulting island structure
corresponding to a simulation performed withR = 109, A = 1000 and2 = 0.05.
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Figure 1. A representative sample of 100× 100 sites from a lattice of 1000× 1000 sites obtained
with our Monte Carlo simulation forR = 109, A = 1000 and2 = 0.05. Filled circles represent
particles andp is an example of isolated particles that perform quasi one-dimensional diffusion in
thex direction because of the collisions with the lateral sides of islands, in this caseB andC.

Figure 2. The average island density,N , againstR in log–log scale for different values of the
diffusion anisotropyA. A = 1 (crosses),A = 102 (open squares),A = 103 (open circles) and
A = ∞ (diamonds). Lines correspond to the asymptotic behaviour and their slopes are stored in
the second column of table 1.

3. Results

In figure 2 is shown, in log–log scales, the behaviour of the island density as a function ofR

for different values ofA. The values of the exponentχ obtained from the straight lines are
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Table 1. Island density exponent corresponding to several values ofA (first column) and obtained
in four different ways. Asymptotic values of the slope of logN versus logR (second column
see figure 2) and of logN versus log(R/ logR) (fourth column). Exponents calculated from
equation (7) (third column) and equation (8) (fourth column). The relative errors of all these results
are below 5%.

A χ χn χ ′ χ ′n

1 0.33 0.31 0.33 0.33
102 0.29 0.28 0.30 0.29
103 0.26 0.26 0.27 0.27
∞ 0 0 0 0

shown in the second column of table 1. The infinitely anisotropic case is very special and will
be discussed later. ForA = 1 we obtainχ = 0.33± 0.01 which is in agreement with the
valueχ = 1

3 obtained for other two-dimensional models with isotropic diffusion [2–5,10]. For
A = 103 we obtainχ = 0.26±0.01, a value which is very close toχ = 1

4, which corresponds
to the point island model in one dimension. These results show thatχ continuously changes
asR increases.

Let us now try to understand this behaviour. Remember that the particles do not stick at
the lateral sides of islands; then these sides act as obstacles for them. For example, the particle
p in figure 1 will collide many times with islandsB andC. Then this particle will perform an
effectiveone-dimensional diffusion in thex direction (not in direction of fast diffusion) before
it can escape from the region limited by the former two islands. In order to study this effect we
compute the square root of mean-square displacements,1x and1y, in thex andy direction,
respectively, for an isolated random walker (a tracer particle) with anisotropic diffusionA, as a
function of the number of jumping stepsn. This particle starts the walk in a randomly chosen
empty site of a substrate. This substrate was previously obtained applying the Monte Carlo
rules of the model up to the final coverage2 was reached. This random walker does not stick
at the ends of islands but always diffuses. For this tracer particle, we also compute the mean
number of distinct visited sitesS(n) as function ofn.

Figure 3 shows1x and1y as a function ofn in log–log scales, forR = 109, A = 1
andR = 109, A = 103. The dashed straight line corresponds to1y for a random walk on an
empty substrate (a lattice without islands). At short times, the random walk behaves as in an
empty substrate. After that it encounters obstacles that delay displacement in they direction.
At long times the random walk recovers the behaviour1y ∝ √t . 1x is, in practice, not
modified by the presence of islands, because they are obstacles of small cross section. Note
that, forA = 103, there is a region ofn in which1y is almost constant, and then the random
walker performs an effective one-dimensional diffusion in thex direction.

The exponentχ is related to the way monomers explore the substrate. It can be shown,
following [2], thatN and the densities of monomers,N1, satisfy the relations

dN

dt
∼ N1

τ

(
N1

N

)
(1)

dN1

dt
∼ ε

1t
− N1

τ
(2)

whenN1 � N , an assumption valid whenR � 1 (the case we are interested in), where
τ is the lifetime for monomers and1t is the time associated with each Monte Carlo step.
Numerical integration of equations (1) and (2) shows that a quasi-stationary regime exists
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Figure 3. The square root of the mean-square displacement,1x (open circles) and1y (open
squares), against the number of steps,n, for particles diffusing with anisotropyA on a substrate
with an island configuration obtained by means of Monte Carlo simulations of the model forA, R
and2. (a) Corresponds toA = 1,R = 109 and2 = 0.05, (b) corresponds toA = 103, R = 109

and2 = 0.05. The dashed lines correspond to1y for the case of free diffusion (i.e. on an empty
lattice). For the meaning ofni see figure 4. The Monte Carlo results where obtained averaging
over 103 samples.

where dN1/dt ∼ 0 [2], and in such a case (1) becomes

dN

dt
∼ ε2

1t2
τN−1. (3)

On average, each monomer visits a numberN−1 of distinct sites between the instant of
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Figure 4. The mean number of distinct visited sitesS against the number of steps for particles
diffusing with anisotropyA = 1 (filled triangles) andA = 103 (open triangles) on substrates
obtained by means of Monte Carlo simulations with the values ofA, R and2 corresponding to
figures 3(a) and (b), respectively. The values ofni were obtained graphically using equation (4)
with the values ofN extracted from figure 2. The slopes of the straight lines correspond to the
exponentα of equation (5). These Monte Carlo results where obtained averaging over 103 samples.

deposition and the instant of aggregation for this monomer. So, we can write

S(n) ∼ 1

N
(4)

with n = 2((Px + Py)/1t)τ . If, furthermore,

S(n) ∼ nα (5)

then (3) can be integrated to obtain [11]

N ∼ R−χn2χn (6)

with

χn = α

1 + 2α
. (7)

The quantityα appearing in (7) is, according to (4) and (5), the local value of the slope
of logS as a function of logn around the pointn whereS(n) = 1/N . So, values forα were
obtained graphically from figure 4, using the corresponding values forN extracted from the
asymptotic regime of figure 2. The values ofχn obtained from equation (7) are shown in the
third column of table 1, and are in agreement with the results ofχ obtained from the slopes
of straight lines of figure 2. Let us note that the values ofα (and thenχn) might depend onR;
nevertheless the values ofχn obtained are independent of the value ofR used. For example,
for A = 103 we obtainχn = 0.260, 0.262, 0.268 and 0.257 forR = 109, 1010, 1011 and
1012, respectively. These results and the straight line shown in figure 2 confirm that the value
χ = 0.26 for A = 103 corresponds to region of anR extended, at least, over five orders
of magnitude. The open question is whether in the asymptotic regimeR → ∞ one obtains
the two-dimensional valueχ = 1

3. The simulation for very large values ofR is beyond our
computational facilities. Nevertheless, for 108 6 R 6 1012 an effective one-dimensional
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diffusion (the plateau shown in figure 3(b)) is obtained. We also compute the ratio between
the average island length〈l〉 and1x at n, η ≡ 〈l〉/1x(n). A value ofη > 1 means that, on
average, the particles cannot escape from obstacles. We obtainη = 4.3, 4.4, 4.1 and 4.5 for
R = 109, 1010, 1011 and 1012, respectively. Then the valueχ = 0.26 forA = 103 can be
interpreted as a consequence of the effective one-dimensional diffusion (remember thatχ = 1

4
for a point island model in one dimension), and there is no indication that this value tends to
χ = 1

3 asR increases (at least for 108 6 R 6 1012).
Taking into account the logarithmic correction which appears in two-dimensional systems

we replace, in thex-axis of figures 2 and 4,R andn by R/ logR andn/ logn, respectively.
From these new figures (not shown here) we obtain the exponentsχ ′ andα′. Following the
same procedure used to obtain equation (7), one has

χ ′n =
α′

1 + 2α′
. (8)

The obtained values ofχ ′ andχ ′n are shown in table 1. One can see the agreement between
the values of the island density exponents obtained by different methods.

Finally, we discuss the case of infinitely anisotropic diffusion. ForA = ∞, and long
times, the diffusion along they direction is blocked by obstacles and1x = 0 because the
probability of jumping along thex direction is zero (Px = 0). Then, the random walker does
not perform an effective one-dimensional diffusion as in the case of finite values ofA. Now
1y andS(n) reach saturation constant values at large times. We obtainα = 0 and then, from
equation (7),χn = 0. But the assumptions used to obtain equation (7) could be unsatisfied.
For example, the number of diffusing monomers could be large. Nevertheless, from figure 2
we also found thatχ = 0. This is because for large enoughR, particles visit all their accessible
sites between obstacles before finding another new deposited particle, and then increasingR

will not change the island number density. The same anomalous resultχ = 0 forA = ∞ was
found in [10] for a model of growth of dimerized chains.

4. Conclusions

In this paper we obtain for 1< A <∞, nonuniversal (i.e.A-dependent) results for the island
density exponentχ . These values can be considered as effective exponents (χeff ), in the
sense that they could be different from the exponent corresponding to the asymptotic regime
R → ∞. Nevertheless, the values of theseχeff hold in a region of four to five orders of
magnitude inR, and we do not find any indication that these values change asR increases.
Then it is possible thatχ = χeff = 1

4 in the limit R → ∞. Unfortunately, the confirmation
of this possibility is beyond our computational facilities.

A possible explanation of the dependence ofχeff onA is as follows. Let us consider a
random walk with an anisotropic diffusionA much greater than one (then1y � 1x at all
times). In this case a crossover number of stepnc = A exists (1x(nc) ' a). At nmuch smaller
thannc, the random walk behaves as in one dimension (α = 1

2). At n much greater thannc,
the random walker performs a two-dimensional diffusion (α = 1). Now if the average number
of stepsn of a monomer is lower thannc, one would expect to obtain the one-dimensional
exponentχeff = 1

4 (see equation (7)). Although we actually foundχeff = 1
4 for A � 1,

it was also obtained thatn � A (see figure 4 wheren1000 is close to 105 for A = 1000)
which would implicateχ = 1

3. So the above-mentioned argument is wrong. Note that in this
reasoning, we are dealing with a random walk in an empty lattice and that forn < nc the
one-dimensional diffusion is in they direction. In a real system, there exist islands that play
the role of obstacles (see figure 1). Due to these obstacles, monomers perform an effective
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one-dimensional diffusion, but in thex direction (see figure 3(b) where there is a region of
n in which1y ' constant). Due to this effect, one findsχeff ' 1

4 for A = 103, as in an
one-dimensional system.

The results presented here show thatχeff = 1
4 in the limitA→∞. On the other hand, for

A = ∞ one findsχ = 0. This last result is a direct consequence of the fact that the particles
cannot escape from the column where they have landed, and that their motions are limited by
the nearest obstacles in they direction. In contrast, for a finite value ofA, they perform an
effective one-dimensional diffusion in thex direction.

Let us finally comment that in [11] is also found a nonuniversal behaviour of the exponent
χ for a point island model in two dimensions. This behaviour is a consequence of the substrate
where the particles diffuse. In this substrate there are impurities with a repulsive monomer–
impurity interaction. These impurities act as obstacles reducing the space where the particles
diffuse. Then, a random walker performs an anomalous diffusion (i.e.α < 1) in this substrate.
Due to this anomalous diffusion, the exponentχ (see equation (7)) smoothly changes with the
concentration of impurities. The main difference between this model and ours is that in the
former the obstacles are already present at the beginning of simulations, whereas in the latter
they appear as a consequence of the dynamics.
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